Law of Corresponding States
It the Values of P,V and T be expressed as fraction of Corresponding Coital values, meget.

$$
P / P_{e}=P_{r}, \frac{V}{V_{e}}=V_{r} \text { and } \frac{T}{T_{e}}=T_{r}
$$

Where $P_{r} V_{r}$ and T_{r} are called reduced Pressure, Volume and Temperature respectively,
therepre, $P=P_{\sigma} \cdot P_{e}, \quad V=V_{\sigma} \cdot V_{e}$ and $T=T_{\gamma} \cdot T_{e}$
Replacing P, V anal T in Vanderwaal's equation for -real gases

$$
\begin{aligned}
& \left(P+\frac{a}{V^{2}}\right)(V-b)=R T \\
& \left\{P_{r} \cdot P_{c}+\frac{a}{V_{r}^{2} \cdot V_{c}^{2}}\right\}\left(V_{r} \cdot V_{c}-b\right)=R T_{r} \cdot T_{c}
\end{aligned}
$$

On Putting the value of Critical constants, we have

$$
\begin{aligned}
& \left\{P_{r} \cdot \frac{a}{27 b^{2}}+\frac{a}{V_{s}^{2} 9 b^{2}}\right\}\left(V_{r} 3 b-b\right)=\mathbb{R}^{2} T_{r} \cdot \frac{8 a}{27 k^{2} b} \\
& \left\{P_{r} \cdot \frac{a}{27 b^{2}}+\frac{a}{9 b^{2} V_{s}^{2}}\right\} b\left(3 V_{r}-1\right)=T_{r} \cdot \frac{8 a}{27 b}
\end{aligned}
$$

60, $\left\{\frac{P_{7} \cdot a}{27 b}+\frac{a}{9 b V_{r}^{2}}\right\}\left\{3 V_{r}-1\right\}=\operatorname{Tr} \cdot \frac{8 a}{27 b}$
Multiplying throughout by $27 \mathrm{~b} / \mathrm{a}$ wee have

$$
\begin{equation*}
\left(P_{r}+\frac{3}{V_{r}^{2}}\right)\left(3 V_{3}-1\right)=8 T_{0} \tag{1}
\end{equation*}
$$

The above es"(1) is completely free from Constants such as R, a and b, hence this is applicable to all substances in fluid stale. Tho or more substances having identical P_{T}, V_{V} and T_{r} are said to be Corresponding state. This is also Called Law of Corresponding estates

As b.ps of liquids are approximately $\frac{2}{3}$ Jd of their T_{c} 'S. It means that hiquals at their $b P_{s}$ are approximately in their Corresponding states.

